Kernels of Directed Graph Laplacians
نویسندگان
چکیده
Let G denote a directed graph with adjacency matrix Q and indegree matrix D. We consider the Kirchhoff matrix L = D − Q, sometimes referred to as the directed Laplacian. A classical result of Kirchhoff asserts that when G is undirected, the multiplicity of the eigenvalue 0 equals the number of connected components of G. This fact has a meaningful generalization to directed graphs, as was observed by Chebotarev and Agaev in 2005. Since this result has many important applications in the sciences, we offer an independent and self-contained proof of their theorem, showing in this paper that the algebraic and geometric multiplicities of 0 are equal, and that a graphtheoretic property determines the dimension of this eigenspace – namely, the number of reaches of the directed graph. We also extend their results by deriving a natural basis for the corresponding eigenspace. The results are proved in the general context of stochastic matrices, and apply equally well to directed graphs with non-negative edge weights.
منابع مشابه
Laplacians and the Cheeger inequality for directed graphs
We consider Laplacians for directed graphs and examine their eigenvalues. We introduce a notion of a circulation in a directed graph and its connection with the Rayleigh quotient. We then define a Cheeger constant and establish the Cheeger inequality for directed graphs. These relations can be used to deal with various problems that often arise in the study of non-reversible Markov chains inclu...
متن کاملCoverings, Laplacians, and Heat Kernels of Directed Graphs
Combinatorial covers of graphs were defined by Chung and Yau. Their main feature is that the spectra of the Combinatorial Laplacian of the base and the total space are related. We extend their definition to directed graphs. As an application, we compute the spectrum of the Combinatorial Laplacian of the homesick random walk RWμ on the line. Using this calculation, we show that the heat kernel o...
متن کاملNonparametric Transforms of Graph Kernels for Semi-Supervised Learning
We present an algorithm based on convex optimization for constructing kernels for semi-supervised learning. The kernel matrices are derived from the spectral decomposition of graph Laplacians, and combine labeled and unlabeled data in a systematic fashion. Unlike previous work using diffusion kernels and Gaussian random field kernels, a nonparametric kernel approach is presented that incorporat...
متن کاملLearning with Hypernode Graphs Spectral Learning with Hypernode Graphs Application to Skill Rating for Multiple Players Games∗
The aim of this paper is to propose methods for learning from interactions between groups in networks. For this, we introduce hypernode graphs as a formal tool able to model group interactions. A hypernode graph is a set of weighted binary relations between disjoint sets of nodes. We define Laplacians and kernels for hypernode graphs. And we propose spectral learning algorithms over hypernode g...
متن کاملA Combinatorial View of Graph Laplacians
Discussions about different graph Laplacians—mainly the normalized and unnormalized versions of graph Laplacian—have been ardent with respect to various methods of clustering and graph based semi-supervised learning. Previous research in the graph Laplacians, from a continuous perspective, investigated the convergence properties of the Laplacian operators on Riemannian Manifolds. In this paper,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 13 شماره
صفحات -
تاریخ انتشار 2006